
A First-Order Syntax for the π-Calculus in

Isabelle/HOL using Permutations

Christine Röckl

LAMP – DI – EPFL, INR Ecublens, 1015 Lausanne, Switzerland.
christine.roeckl@epfl.ch

Abstract. A formalized theory of alpha-conversion for the π-calculus in
Isabelle/HOL is presented. Following a recent proposal by Gabbay and
Pitts, substitutions are modelled in terms of permutations, and alpha-
equivalence is defined over all but finitely many names. In contrast to the
work by Gabbay and Pitts, however, standard universal and existential
quantification are used instead of introducing a new binder.
Further, a classification of the various approaches to formalizing lan-
guages with binders is presented. Strengths and weaknesses are pointed
out, and suggestions for possible applications are made.

1 Introduction

The π-calculus is a model of higher-order concurrent programming languages [3,
18, 22, 31], and as such is particularly characterized by its binders, input, ax.P ,

and restriction, (νx)P . As an example, consider the processes P
def

=!az.zx1.zx2.P
′

and C
def

= (νy)āy.ȳb.ȳc.C′. Process P is a procedure1 that each time it is called
along channel a and transmitted two arguments, launches an instantiation of its
body P ′. Process C, on the other hand, models a client creating a new channel
y over which it then transmits its parameters b and c to P . Assuming that z
does not occur in P ′ and y does not occur in C′, the following communication
can be established between the two processes (modulo strong bisimilarity ∼):

P |C
τ
→ ∼ P | (νy)(yx1.yx2.P

′ | ȳb.ȳc.C′) C calls P along a,
τ
→ P | (νy)(yx2.P

′{b/x1} | ȳc.C′) C transmits b to P ′,
τ
→ ∼ P |P ′{b/x1, c/x2} |C

′ C transmits c to P ′.

This simple mechanism of creating and transmitting new names is the source of
the expressive power of the π-calculus, but makes reasoning extremely intricate,
necessitating an application of interactive theorem-proving.

The first question to be decided in formalizations of languages with binders, like
the π-calculus, is which syntax to build on. There exist three general approaches,

1 The definition of procedures is a typical application of replication !P , intuitively
describing an unlimited number of copies of P . Often replication is used in an input-

bounded form, !az.P , where a can be understood as the name of the procedure.

each of which gives rise to a number of variations: (1) first-order syntax in a deep
embedding, (2) higher-order syntax in a deep embedding, and (3) higher-order
syntax in a shallow embedding. Note that first-order syntax always yields a deep
embedding. Traditionally, deep embeddings are considered to be well-understood
and are therefore often applied in syntax analysis and meta-theoretical justifica-
tions. Reasoning about concrete systems of larger size, on the other hand, entails
cumbersome definitions as well as a diffusing administration of bound variables.
Therefore, shallow embeddings have become more and more popular, motivated
both by a growing theoretical basis and the fact that they free the user from
struggling with bound variables, the latter being particularly essential in reason-
ing about concrete terms (programs or processes). On the other hand, reasoning
about syntax in a shallow embedding either requires a logical framework that is
sufficiently weak yet incorporates non-standard axioms ([16, 17] presents such a
framework implemented for the π-calculus in Coq), or else a heavy machinery
eliminating exotic terms and mimicking the missing structural induction princi-
ples by rule induction over well-formedness predicates ([28, 29] presents such a
framework for the π-calculus in Isabelle/HOL). Note that the actual choice of a
specific syntactic framework heavily relies on the application one has in mind.

In this paper, we study a formalization of the π-calculus in Isabelle/HOL [27, 25]
using a first-order syntax2. It is part of a larger project aiming at theorem-prover
support for reasoning within and about the π-calculus and related languages.
The main motivation for the work at hand was to see how conveniently the
permutation model can be applied to a formalization of the π-calculus using
Isabelle/HOL (so far, Gabbay and Pitts have used Isabelle/ZF as a framework
to justify their approach and apply it to the λ-calculus, see [8] for details), and to
relate it to approaches investigated previously. The proposition of Gabbay and
Pitts [8, 9] is based on two ideas: (1) model substitutions in terms of permutations
and (2) reason about all but finitely many instantiations. As a slight modification,
we do not introduce a new operator for idea (2) but implement it in terms of
universal and existential quantification. Note that idea (2) is independent of idea
(1); it can be applied together with other notions of substitution alike.

A second aim of this paper is to generally classify frameworks for languages with
binders, based on our experience with the π-calculus. That is, we give charac-
terizations of the diverse techniques, discussing their strengths and weaknesses,
and specify areas in which they can typically be applied. Although originally ob-
tained for the π-calculus in Isabelle/HOL, these results should be equally valid
for formalizations of other languages with binders in comparable frameworks.

Overview In Section 2, we describe the basic features of Isabelle/HOL. In Sec-
tion 3, we introduce the syntax of the π-calculus and model substitutions by per-
mutations, in Isabelle/HOL. In Section 4, we derive a theory of α-equivalence
using all but finitely many instantiations. Section 5 discusses the diverse ap-
proaches providing guidelines for applications. Section 6 concludes the paper.

2 The proof-scripts are available at http://lampwww.epfl.ch/~roeckl/Pi/. Some ex-
tracts can also be found in the appendix.

2

2 Isabelle/HOL

We use the general-purpose theorem-prover Isabelle [27], based on higher-order
intuitionistic logic, and formalize the π-calculus in its instantiation HOL for
higher-order logic [25]. Proofs in Isabelle are based on unification, and are usually
conducted in a backward-resolution style: the user formulates the goal he/she
intends to prove, and then—in interaction with Isabelle—continuously reduces
it to simpler subgoals until all of the subgoals have been accepted by the tool.
Upon this, the goal can be stored in the theorem-database of Isabelle/HOL
to be applicable in further proofs. The prover offers various tactics, most of
them applying to single subgoals. The basic resolution tactic resolve_tac, for
instance, allows the user to instantiate a theorem from Isabelle’s database so that
its conclusion can be applied to transform a current subgoal into instantiations
of its premises. Besides these classical tactics, Isabelle offers simplification tactics
based on algebraic transformations. Powerful automatic tactics apply the basic
tactics to prove given subgoals according to different heuristics. The automatic
solver auto_tac, for example, combines classical reasoning and simplification
over sets of rules that can be modified by the user. The tactic

(auto_tac (claset() addIs [nren_trans], simpset() delsimps [nren_def]))

for example, adds the introduction rule nren_trans to the set of classical rules,
and removes the rewrite rule nren_def from the set of simplification rules. When
adding definitions and theorems, however, the user has to take care not to pro-
voke unprovable subgoals or infinite loops.

In Isabelle/HOL, the user can define recursive datatypes and inductive sets.
The prover then automatically computes rules for induction and case-injection.
Note that all these techniques have been fully formalized and verified in Is-
abelle/HOL, that is, they are a conservative generic extension [2, 26]. Defini-
tions and proofs are usually given on an object-level (HOL), but can employ
meta-level (Isabelle) functions. This gives rise to shallow embeddings as opposed
to deep embeddings fully residing on the object-level [2].

3 The Syntax of the π-Calculus

The π-calculus [23, 24] is the mobile counterpart of CCS, reducing its predecessor
to basics by identifying the sort of messages and channels, referring to both as
names. This gives processes the possibility to declare new names and send them
to other processes, thus create private communication lines with them. It is this
syntactic simplicity, from which the π-calculus draws the power to model mobile
communication systems [23] and higher-order languages [3, 18, 22, 31].

Names Consider an at least countably infinite set of names, ranged over by
a, b, . . . , x, y, In our formalization, we have not chosen a particular type,
but axiomatically accept every type that is at least countably infinite. We have

3

fn (0) = ∅
fn (τ.P) = fn (P)

fn (āb.P) = {a, b} ∪ fn (P)
fn (ax.P) = {a} ∪ (fn (P)− {x})

fn ((νx)P) = fn (P)− {x}
fn (P + Q) = fn (P) ∪ fn (Q)
fn (P |Q) = fn (P) ∪ fn (Q)

fn ([a = b]P) = {a, b} ∪ fn (P)
fn ([a 6= b]P) = {a, b} ∪ fn (P)

fn (!P) = fn (P)

bn (0) = ∅
bn (τ.P) = bn (P)

bn (āb.P) = bn (P)
bn (ax.P) = {x} ∪ bn (P)

bn ((νx)P) = {x} ∪ bn (P)
bn (P + Q) = bn (P) ∪ bn (Q)
bn (P |Q) = bn (P) ∪ bn (Q)

bn ([a = b]P) = {a, b} ∪ bn (P)
bn ([a 6= b]P) = {a, b} ∪ bn (P)

bn (!P) = bn (P)

Table 1. Names of processes. Free and bound names are computed by primitively

recursive functions. The names of a process are n (P)
def
= fn (P) ∪ bn (P).

adopted this approach already in [28, 29], leaving the possibility for specific in-
stantiations, such as with naturals or reals. Naturals, for instance, can increase
automation in certain cases, because fresh names can be computed by determin-
ing the maximal name in the involved processes and choosing the successor.

Processes Implementing communications as basic primitive, the calculus pos-
sesses prefixes π ::= τ | āb | ax, which are silent, that is, invisible, output,
and input prefixes, respectively. Processes are then built from inaction, prefix,
restriction, choice, parallel composition, matching, mismatching, and replication:

P ::= 0 | π.P | (νy)P | P + Q | P |Q | [a = b]P | [a 6= b]P | !P.

The actual syntax may vary from one application to another. Often, mismatching
is omitted due to its semantic misbehaviour in various cases, or output prefixes
may stand for themselves only, as in asynchronous π-calculi. We formalize the
full syntax to be comparable with previous works [17, 28, 29].

Binders The π-calculus has two binders, input prefix and restriction, for which
the notion of boundedness is slightly distinct, however. A name x bound in an
input ax.P can be considered as a place-holder for a name b to be received
in a communication ax.P | āb.Q

τ
→ P{b/x} |Q later on. A name y bound in a

restriction (νy)P , on the other hand, rather represents a private channel, that
is, a name that is only known to P and is inaccessible to all processes running
in the environment. On a more nominal level, this exclusiveness could also be
explained as y being distinct from any name currently in use.

Free and bound names In order to compute the free and bound names of a process
P , we use standard primitively recursive functions fn (P) and bn (P). The names
of a process, n (P), are then simply the union of its free and bound names.
For instance, fn (ax.P) = {a} ∪ (fn (P) − {x}) and bn (ax.P) = {x} ∪ bn (P).
See Table 1 for a complete overview. Note that we are able to compute the

4

(0){x↔y} = 0
(τ.P){x↔y} = τ.P{x↔y}

(āb.P){x↔y} = a{x↔y}b{x↔y}.P{x↔y}
(ab.P){x↔y} = a{x↔y}b{x↔y}.P{x↔y}

((νb)P){x↔y} = (νb{x↔y})P{x↔y}
(P + Q){x↔y} = P{x↔y}+ Q{x↔y}
(P |Q){x↔y} = P{x↔y} |Q{x↔y}

([a = b]P){x↔y} = [a{x↔y} = b{x↔y}]P{x↔y}
([a 6= b]P){x↔y} = [a{x↔y} 6= b{x↔y}]P{x↔y}

(!P){x↔y} = !P{x↔y}

Table 2. Substitution. Permuting on names, a{x↔y} = if a = x then y else if a = y

then x else a, substitution can disregard whether a name is free or bound.

bound names only because we are working with a deep embedding. In a shallow
embedding, bound names are meta-variables, inaccessible on the object-level.

Substitution The use of first-order syntax entails the need for substitution, in
order to (1) define α-equivalence and α-conversion and to (2) instantiate terms in
a β-reduction. Focusing on the first area of application, we can use permutations
to implement substitution. Table 2 gives the corresponding definitions for the π-
calculus. Note that instantiations require a non-injective notion of substitution.

The approach has two elegant properties: (1) in contrast to standard substi-
tutions, permutations are completely symmetric, and (2) permutations can deal
with free and bound names alike, owing to their bijectivity. The permutation
model allows us to derive the following results without any difficulty:

Lemma 1. For a process P and names a, b, x, y such that x, y 6∈ n (P),

1. P{a↔a} = P ,
2. P{a↔b} = P{b↔a},
3. (P{x↔a}){y↔x} = P{y↔a}.

Proof: The proofs are straightforward applications of Isabelle’s automatic tac-
tics and, in item 3, structural induction. 2

4 A Theory of α-Equivalence

In this section, we derive a theory of α-equivalence following the second idea of
Gabbay and Pitts, which is to underspecify the requirements on names used in
instantiations, simply referring to all but finitely many of them. This allows us to
derive laws telling that it finally suffices to instantiate continuations of binders
with a single fresh name. Yet, in contrast to the approach proposed in [8, 9], we
do not introduce a new quantifier but specify it on two levels using universal
and existential quantification. In particular, we first introduce α-equivalence

5

0 =F
α 0

nl P =F
α P

′

τ.P =F
α τ.P

′ tau
P =F

α P
′

āb.P =F
α āb.P

′ out

∀b 6∈ F . P{b↔x} =F∪{b}
α P

′{b↔x
′}

ax.P =F
α ax

′
.P

′ in
∀b 6∈ F . P{b↔x} =F∪{b}

α P
′{b↔x

′}

(νx)P =F
α (νx

′)P ′ res

P =F
α P

′
Q =F

α Q
′

P + Q =F
α P

′ + Q
′ ch

P =F
α P

′
Q =F

α Q
′

P |Q =F
α P

′ |Q′ par

P =F
α P

′

[a = b]P =F
α [a = b]P ′ mt P =F

α P
′

[a 6= b]P =F
α [a 6= b]P ′ mmt P =F

α P
′

!P =F
α !P ′ rep

Table 3. α-Equivalence wrt. F. We define α-equivalence with respect to a set F of
“forbidden” names, that is, names that must not be used in instantiations.

with respect to a set F of “forbidden” names, in the definition of which we
use universal quantification over all names not in F . Then we define a notion
independent of F which merely requires the existence of some finite F . Usually,
one will choose the set of (free) names of the processes that are to be compared.
Yet, the underspecification of such a set allows us to derive transitivity of α-
equivalence, which is hard (or even impossible) for more specific formulations.

Implementing α-equivalence Table 3 gives an overview of the introduction rules
inductively defining α-equivalence with respect to F . Intuitively, F specifies
the (free) names of the processes. Thus, when a fresh name is introduced by an
instantiation, it has to be added to F . An equivalence statement ax.P =F

α
ax′.P ′,

for instance, can be derived from P{b↔ x} =
F∪{b}
α P ′{b↔ x′}. A basic result

necessary in later proofs is that F can be augmented arbitrarily:

Lemma 2. If P =F
α P ′, then P =F∪F ′

α P ′.

Proof: By an easy induction on =F
α , solving all cases by means of the automatic

tactic auto_tac (see also Appendix C). 2

Definition 1 (α-Equivalence). Two processes P and P ′ are α-equivalent,
written P =

α
P ′, if there exists a finite F such that P =F

α
P ′.

Results The underspecification of F in Definition 2 allows us to derive transi-
tivity of α-equivalence, as well as certain congruence results.

Theorem 1. For processes P, P ′ and names x, y 6∈ n (P) ∪ n (P ′),

1. =α is an equivalence.
2. P =

α
P ′ implies P{y↔z} =

α
P ′{y↔z}.

3. P{x↔b} =α P ′{x↔b′} implies P{y↔b} =α P ′{y↔b′}.

Proof: The results follow from similar results for =F
α and the fact that P =F

α P ′

implies P =F∪F ′

α
P ′ for arbitrary F ,F ′ (transitivity). The equivalence results

6

(0){x←y} = 0
(τ.P){x←y} = τ.P{x←y}

(āb.P){x←y} = āb.P{x←y}
(ab.P){x←y} = if b = y then ax.P{x↔y} else ab.P{x←y}

((νb)P){x←y} = if b = y then (νx)P{x↔y} else (νb)P{x←y}
(P + Q){x←y} = P{x←y}+ Q{x←y}
(P |Q){x←y} = P{x←y} |Q{x←y}

([a = b]P){x←y} = [a = b]P{x←y}
([a 6= b]P){x←y} = [a 6= b]P{x←y}

(!P){x←y} = !P{x←y}

Table 4. α-Conversion. The function P{x← y} searches for the outermost bound
occurrences of y replacing them by x and applying permutation to the continuation.
Usually, a fresh x is chosen for that purpose.

are obtained easily using standard automatic tactics. The substitution resulults
are a bit harder to prove, using lists of permutations and induction over =F

α . 2

An immediate consequence of item 3 is that we do not have to consider all instan-
tiations with fresh names but only a single one in order to derive α-equivalence
of processes with binders. This yields the following characterization:

Theorem 2. For processes P, P ′, Q, Q′ and x 6∈ n (P) ∪ n (P ′),

1. 0 =
α

0,
2. P =

α
P ′ implies τ.P =

α
τ.P ′ and āb.P =

α
āb.P ′ and [a = b]P =

α
[a = b]P ′

and [a 6= b]P =
α

[a 6= b]P ′ and !P =
α
!P ′,

3. P =
α

P ′ and Q =
α

Q′ implies P + Q =
α

P ′ + Q′ and P |Q =
α

P ′ |Q′,
4. P{x↔b} =

α
P ′{x↔b′} implies ab.P =

α
ab′.P ′ and (νb)P =

α
(νb′)P ′.

Proof: Follows as a corollary of Theorem 1. 2

A theory of α-conversion In practice, a theory of α-equivalence is often com-
plemented by a notion of α-conversion. It can be specified by introducing fresh
names for certain bound names, applying substitution underneath binders. Ta-
ble 4 defines a primitively recursive function implementing α-conversion. For
it, we can derive the standard laws characterizing α-conversion, including that
arbitrary bound names can be eliminated by replacing them with fresh ones.

Theorem 3. For every process P and names a, b, x with x 6∈ n (P),

1. ax.P{x↔b} =
α

ab.P , and
2. (νx)P{x↔b} =

α
(νb)P ,

3. b 6∈ n (P{x←b}),
4. P{x←b} =α P , and consequently,
5. there exists P ′ such that P =α P ′ and b 6∈ n (P ′).

Proof: Items 1 and 2 can be derived from Theorem 2 by applying transitivity of
permutation and reflexivity of α-equivalence. Items 3 and 4 follow by structural
induction on P using items 1 and 2. Item 5 is a direct consequence. 2

7

first-order/deep higher-order/deep higher-order/shallow

adequacy usually obvious to be proved to be proved

substitution for whole language for λ-calculus not necessary

αβη substitutions deferred for free

bound
parameters

object-variables
accessible

object-variables
accessible

meta-variables
inaccessible

induction yes no no

exotic terms no no possibly

application meta-theory
justify paper proofs

meta-theory
easy results about
binders
α-conversion

concrete examples
easy results about
binders

π-calculus [1, 12, 13, 20, 28] [10, 11] [5, 17, 21, 28, 29]

Table 5. General classification. Combining first-order and higher-order syntax with
deep and shallow embeddings. First-order syntax always yields a deep embedding.

5 Classifying Formalizations

When it comes to formalizing a language, the first question that naturally arises
is which syntax to choose. In this section, we present a classification of the
approaches known up to date, based on (mostly own) practical experience. We
describe the main features of the approaches, point out strengths and weaknesses
with respect to formalizations, and try to give a guideline for possible areas of
application. Sticking to the π-calculus as an exemplaric language, we point to
formalizations of it within the various schemes. In a second part of this section,
we discuss in more detail first-order formalizations; for discussions about higher-
order formalizations, see, for instance, [11, 17, 29].

General classification There exist two ways of expressing binders in general-
purpose theorem-proving. Following a deep strategy, binders are formalized fully
within the object-level using object-variables, for free and bound parameters
alike. An alternative way is to apply a shallow implementation strategy, defin-
ing binders in terms of meta-level functions, thus representing bound names by
meta-variables, whereas free parameters are further denoted by object-variables.
These two implementation strategies can be combined with a first-order or a
higher-order syntactic description of the language. Applying first-order syntax,
of course, one always obtains a deep embedding, because it does not distinguish
between binders and other operators on the syntactic level. Table 5 gives an
overview of the three ways of formalization.

(1) The classical way is to remain fully within the object-level of the prover,
giving a first-order syntax in a deep embedding. It is usually close to the way
languages are treated on paper, and is therefore traditionally applied in meta-
theoretical reasoning. A major inconvenience with respect to both formalization
and derivations is that substitutions and α-equivalence have to be defined ex-

8

plicitely. In particular, reasoning about concrete processes becomes rather cum-
bersome. Yet, in cases where one wants to reason about bound names—in a
theory of α-conversion, for example—the approach is indispensable.

(2) A second line of research applies higher-order abstract syntax (HOAS), yet
still within a deep embedding. That is, a λ-calculus is formalized along the lines
of approach (1) in order to provide a functional mechanism (a pseudo-meta-
level) within which binders are then expressed. As a consequence, substitutions
and α-equivalence have to be defined only for the (small) underlying calculus
and not for the whole (usually large) language itself. A definite advantage of
the approach with respect to a shallow embedding is that it allows the user to
choose an appropriate meta-logic. However, still both free and bound parameters
are expressed by object-variables, which entails substitutions and makes the
definition of concrete terms (programs to be analysed) cumbersome.

(3) A third line of research builds on HOAS in a shallow embedding, using the
functional mechanism of the theorem-provers to represent and deal with bound
names. In this case, the user does not have to bother about α-conversion and
β-reduction at all, but further looses access to the bound names. It is even the
case that free and bound names are not merely distinct but incomparable (on
the object-level, on which proofs are conducted) with the former being object-
variables and the latter meta-variables. The approach is particularly useful to
concrete processes, and enjoys increasing popularity also in meta-theoretical rea-
soning. On the other hand, the meta-levels provided by general-purpose theorem-
provers are often so powerful that exotic terms can arise, making an axiomati-
sation of syntactic properties extremely delicate (see [14, 16, 17, 29]).

Concerning application, deep embeddings are rather suitable in meta-theory, be-
cause they are (intuitively) close to reasoning on paper and naturally provide
structural induction. Shallow embeddings traditionally head for applications con-
cerning concrete examples, that is, processes or programs. A general problem of
the HOAS approach in items (2) and (3) is that it does not easily provide struc-
tural induction, which makes syntax analysis difficult. However, with growing
effort in deriving induction and syntactic proof principles, HOAS is entering
meta-theory as well. Induction can be incorporated in the logical framework [16]
or mimicked by rule induction over well-formedness predicates [6, 29]. For a gen-
eral proof-framework, it might make sense to provide both kinds of syntaxes,
with functions translating one syntax into the other and back.

First-order syntax To the best of our knowledge, four approaches have been
studied in π-calculus encodings; see Table 6 for an overview. For other languages,
further variations have been investigated (see, for instance, [7, 15, 30]).

(1) The most straightforward way is to formalize textual substitution in terms of
simple rewrite rules, without taking care of name-capture. Such a definition can
then be used to implement α-conversion, so that a “proper” notion of substitu-
tion can take care of name-capture, usually applying normalization. A theory of
α-equivalence can be obtained along the same lines as done for approach (2) in

9

straightforward permutations
[8, 9]

PTS
[19]

deBruijn
[4]

method simple renaming,
substitution on
top

permutations parameters vs./
variables, two
substitutions

nameless vari-
ables

αβ α-equivalence,
α-conversion,
β-reduction

α-equivalence,
α-conversion

α-equivalence,
α-conversion,
β-reduction

α-equivalence is
identity,
β-reduction

application adequacy, (syn-
tax), semantics

(adequacy), syn-
tax

syntax, seman-
tics

semantics

π-calculus [1, 20, 28] this paper [12] [13]

Table 6. Formalizing first-order syntax. From left to right, the schemes go from
“close to definitions on paper” to “more or less an implementation”.

this paper. However, the proofs usually require more interaction, because of the
asymmetry of the operator, with respect to free and bound parameters.

(2) Recently, Gabbay and Pitts have proposed to use the FM-set model as a ba-
sis for reasoning about languages with binders, modelling substitutions in terms
of permutations. This approach is characterized by a complete symmetry both
of the renaming operation and of the treatment of free and bound parameters,
which relies on the bijectivity of permutations. As demonstrated in [8, 9] as well
as in the preceeding sections of this paper, the permutation model allows for con-
venient definitions of α-conversion and α-equivalence, as well as derivations of the
respective theories. A practical drawback is that the injectivity of permutations
forbids a formulation of β-reduction, hence semantic analysis necessitates the
introduction of a second notion of substitution along the lines of approach (1);
note that for approach (3), a different datatype definition is often convenient to
prevent disjoint summation, and that both approaches (3) and (4) do not need
a theory of α-equivalence in the sense of (2).

(3) As a compromise between an intuitive straightforward approach and technical
feasibility, McKinna and Pollack propose the use of Pure Type Systems (PTS),
based on the idea of explicitely distinguishing between free and bound atoms
by means of distinct sorts, which they refer to as parameters and variables. As
a consequence, two notions of substitution have to be defined, a plain textual
version for parameters and a capture-avoiding notion for variables. The resulting
definitions of substitution are surprisingly simple, yet they do not yield the
symmetry properties inherent to the permutation model.

(4) DeBruijn indices are regularly applied to implement functional mechanisms
on meta-levels of theorem-provers. Here parameters are replaced by numbers,
and α-equivalent terms are represented by one and the same implementation.
Capture-avoiding instantiations are then expressed in terms of basic arithmetic
operations that can be effectively dealt with by the programming language used
for the implementation. When formalizing languages with binders larger than

10

the λ-calculus, the approach is hard to apply, because its technical orientation
makes it intricate and prone to errors. Further, general-purpose theorem provers
generally do not offer arithmetic operations as primitives, hence using DeBruijn
indices never yields the degree of automation one would like to expect from it.

It seems that in first-order syntax with names, one will always have to formalize
two notions of substitution when taking semantic analysis into account. In syn-
tactic analysis, one can do with a single notion of substitution following one of
the first three approaches. Following approach (1), one can require that the in-
stantiated parameters be fresh, approach (2) offers a single notion of substitution
anyway, and approach (3) only necessitates substitution on variables. Approach
(4) is only a restricted basis for syntax analysis, because it identifies α-equivalent
terms, and thus can only be applied in reasoning about α-equivalence classes.

6 Conclusion

In this paper, we have pursued two goals: (1) examine meta-theoretical reasoning
for the π-calculus on the basis of two recent ideas of Gabbay and Pitts [8, 9],
and (2) classify syntactic frameworks for it and related languages.

(1) We have formalized substitution in terms of permutations, and have instan-
tiated continuations of binders with all but finitely many names in the defini-
tion of α-equivalence. An appealing property of permutations is their symmetry,
P{a↔b} = P{b↔a}, simplifying some proofs. Further, due to their bijectivity,
permutations allow for an equal treatment of free and bound names, as well as for
a convenient derivation of laws necessary to study α-equivalence. This bijectivity
yields, on the other hand, that they are incapable of describing β-reduction even
in name-passing calculi like the π-calculus. As an example, consider the commu-
nication āb.P | ax.b̄x.0

τ
→ P | (b̄x.0){b/x}. The result should reduce to P | b̄b.0,

for which a non-injective substitution is necessary, mapping both b and x to b.
Concerning α-equivalence, we have slightly modified the proposal of Gabbay

and Pitts to deal with standard universal and existential quantification instead
of having to introduce and develop a theory for a new quantifier. The main idea
of the approach—underspecifying the names to be used in an instantiation—is
retained, however, allowing for the use of single fresh names in instantiations.
The formulation of α-equivalence is independent of the use of permutations, and
can hence be combined with other notions of substitution alike.

(2) Languages with binders can be formalized in a deep or in a shallow embed-
ding. While the first is traditionally considered closer to reasoning on paper,
the latter is usually more amenable to concrete examples. The choice of a first-
order syntax is often motivated by its natural structural induction principles.
Higher-order syntax, on the other hand, is generally more convenient in reason-
ing about binders, and currently there is some effort to derive suitable principles
for syntax analysis. Yet, the obtained results have to be adapted to the original
syntax afterwards, if they are to justify proofs conducted on paper (returning
from equivalence classes to plain terms).

11

References

1. O. Ait-Mohamed. Pi-Calculus Theory in HOL. PhD thesis, Henry Poincarré
University, Nancy, 1996.

2. S. Berghofer and M. Wenzel. Inductive datatypes in HOL—lessons learned in
Formal-Logic Engineering. In Proc. TPHOL’99, volume 1690 of LNCS, pages 19–
36, 1999.

3. S. Dal Zilio and A. Gordon. Region analysis in a π-calculus with groups. In Proc.

MFCS’00, volume 1893 of LNCS, pages 1–20. Springer, 2000.
4. N. deBruijn. Lambda calculus notation with nameless dummies: a tool for au-

tomatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34:381–392, 1972.

5. J. Despeyroux. A higher-order specification of the π-calculus. In Proc. TCS’00,
volume 1872 of LNCS, pages 425–439. Springer, 2000.

6. J. Despeyroux and A. Hirschowitz. Higher-order abstract syntax with induction
in Coq. In Proc. LPAR’94, volume 822 of LNCS, pages 159–173. Springer, 1994.

7. J. Ford and I. Mason. Establishing a general context lemma in PVS. In Proc.

AWCL’01, 2001.
8. M. Gabbay. A Theory of Inductive Definitions with α-Equivalence: Semantics,

Implementation, Programming Language. PhD thesis, Cambridge University, 2000.
9. M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In

Proc. LICS’99, volume 158, pages 214–224. IEEE, 1999.
10. S. Gay. A framework for the formalisation of pi-calculus type systems in Is-

abelle/HOL. Technical report, University of Glasgow, 2000.
11. A. Gordon and T. Melham. Five axioms of alpha-conversion. In Proc. TPHOL’96,

volume 1125 of LNCS, pages 173–190. Springer, 1996.
12. L. Henry-Gréard. Proof of the subject reduction property for a pi-calculus in Coq.

Technical Report RR-3698, INRIA, 1999.
13. D. Hirschkoff. A full formalisation of π-calculus theory in the calculus of con-

structions. In Proc. TPHOL’97, volume 1275 of LNCS, pages 153–169. Springer,
1997.

14. M. Hofmann. Semantical analysis of higher-order abstract syntax. In Proc.

LICS’99, volume 158, pages 204–213. IEEE, 1999.
15. P. Homeier. A proof of the church-rosser theorem for the lambda calculus in higher

order logic, 2001. Submitted.
16. F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic approach to metareasoning

on systems in higher-order abstract syntax. In Proc. ICALP’01, LNCS. Springer,
2001. To appear.

17. F. Honsell, M. Miculan, and I. Scagnetto. π-calculus in (co)inductive type theory.
Theoretical Computer Science, 253(2):239–285, 2001.

18. C. Jones. A π-calculus semantics for an object-based design notation. In Proc.

CONCUR’93, volume 715 of LNCS, pages 158–172. Springer, 1993.
19. J. McKinna and R. Pollack. Some lambda calculus and type theory formalized.

Journal of Automated Reasoning, 23(3–4):373–409, 1999.
20. T. Melham. A mechanized theory of the π-calculus in HOL. Nordic Journal of

Computing, 1(1):50–76, 1995.
21. D. Miller. The π-calculus as a theory in linear logic: Preliminary results. In Proc.

ELP’92, volume 660 of LNCS, pages 242–264. Springer, 1992.
22. R. Milner. Functions as processes. Journal of Mathematical Structures in Computer

Science, 17:119–141, 1992.

12

23. R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

24. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information

and Computation, 100:1–77, 1992.
25. L. Paulson. Isabelle’s object-logics. Technical Report 286, University of Cambridge,

Computer Laboratory, 1993.
26. L. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In

Proc. CADE’94, volume 814 of LNAI, pages 148–161. Springer, 1994.
27. L. Paulson, editor. Isabelle: a generic theorem prover, volume 828 of LNCS.

Springer, 1994.
28. C. Röckl. On the Mechanized Validation of Infinite-State and Parameterized Re-

active and Mobile Systems. PhD thesis, Technische Universität München, 2001.
29. C. Röckl, D. Hirschkoff, and S. Berghofer. Higher-order abstract syntax with

induction in Isabelle/HOL: Formalizing the π-calculus and mechanizing the theory
of contexts. In Proc. FOSSACS’01, volume 2030 of LNCS, pages 364–378. Springer,
2001.

30. R. Vestergaard and J. Brotherston. Formalised first-order confluence proof for
the λ-calculus using one-sorted variable names. In Proc. RTA’01, volume 2051 of
LNCS, pages 306–321. Springer, 2001.

31. D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–
271, 1995.

A The π-Calculus

Infinity of the set of names is expressed by an axiomatic type-class inf_class

requiring the existence of an injection from the natural numbers to its members.

axclass inf_class < term

inf_class "EX (f::nat=>’a). inj f"

In the datatype for processes, a reference to inf_class ensures that names
always belong to it. The right-hand annotations specify a concrete syntax.

datatype

’a procs = Null (".0" 115)

| Tau "(’a::inf_class) procs" (".t.(_)" [111] 110)

| Out ’a ’a (’a procs) ("_<_>._" [120, 0, 110] 110)

| In ’a ’a (’a procs) ("_[_]._" [120, 0, 110] 110)

| Res ’a (’a procs) (".#_ _" [180, 101] 100)

| Plus (’a procs) (’a procs) (infixl ".+" 85)

| Par (’a procs) (’a procs) (infixl ".|" 90)

| Mt ’a ’a (’a procs) (".[_.=_]_" [100, 100, 96] 95)

| Mmt ’a ’a (’a procs) (".[_.~=_]_" [100, 100, 96] 95)

| Repl (’a procs) (".!_" [100] 100)

B Permutations

Permutation on names is completely symmetric, which carries over to processes.

13

constdefs

nren :: "[(’a::inf_class), ’a, ’a] => ’a" ("n{_<->_}_" [0,0,199] 200)

"n{x<->y}a == if a=x then y else if a=y then x else a"

consts

pren :: "[(’a::inf_class), ’a, ’a procs] => ’a procs"

("p{_<->_}_" [0,0,114] 115)

primrec

"p{x<->y}.0 = .0"

"p{x<->y}(.t.P) = .t.p{x<->y}P"

"p{x<->y}(a.P) = n{x<->y}a<n{x<->y}b>.p{x<->y}P"

"p{x<->y}(a[b].P) = n{x<->y}a[n{x<->y}b].p{x<->y}P"

"p{x<->y}(.#b P) = .#n{x<->y}b p{x<->y}P"

"p{x<->y}(P .+ Q) = p{x<->y}P .+ p{x<->y}Q"

"p{x<->y}(P .| Q) = p{x<->y}P .| p{x<->y}Q"

"p{x<->y}(.[a.=b]P) = .[n{x<->y}a.=n{x<->y}b]p{x<->y}P"

"p{x<->y}(.[a.~=b]P) = .[n{x<->y}a.~=n{x<->y}b]p{x<->y}P"

"p{x<->y}(.!P) = .!p{x<->y}P"

For sample proofs, consider the following, using induction resolved by Isabelle’s
automatic tactic auto_tac:

Goal "p{x<->x}P = P";

by (induct_tac "P" 1);

by (Auto_tac);

qed "pren_id";

Goal "{y, z} Int n P = {} --> p{y<->z}p{z<->x}P = p{y<->x}P";

by (induct_tac "P" 1);

by (auto_tac (claset() addIs [nren_trans], simpset() delsimps [nren_def]));

qed "lemma";

Goal "[| y ~: n P ; z ~: n P |] ==> p{y<->z}p{z<->x}P = p{y<->x}P";

by (fast_tac (claset() addIs [lemma RS mp]) 1);

qed "pren_trans";

C α-Equivalence

The two levels of α-equivalence, Al with respect to F and Alpha are defined in
terms of an inductive set and a constant definition, respectively.

consts

Al :: "(’a procs * (’a::inf_class) set * ’a procs) set"

Alpha :: "((’a::inf_class) procs * ’a procs) set"

syntax

"@Al" :: "[’a procs, ’a set, ’a procs] => bool"

("_ =a[_] _" [70, 0, 71] 70)

14

"@Alpha" :: "[’a procs, ’a procs] => bool"

("_ =a _" [70, 71] 70)

translations

"P =a[F] P’" == "(P, F, P’) : Al"

"P =a P’" == "(P, P’) : Alpha"

inductive "Al"

intrs

Null ".0 =a[F] .0"

Tau "P =a[F] P’ ==> .t.P =a[F] .t.P’"

Out "P =a[F] P’ ==> a.P =a[F] a.P’"

In "ALL x. x ~: S --> p{x<->b}P =a[insert x F] p{x<->b’}P’ \

\ ==> a[b].P =a[F] a[b’].P’"

Res "ALL x. x ~: S --> p{x<->b}P =a[insert x F] p{x<->b’}P’ \

\ ==> .#b P =a[F] .#b’ P’"

Plus "[| P =a[F] P’ ; Q =a[F] Q’ |] ==> P .+ Q =a[F] P’ .+ Q’"

Par "[| P =a[F] P’ ; Q =a[F] Q’ |] ==> P .| Q =a[F] P’ .| Q’"

Mt "P =a[F] P’ ==> .[a.=b]P =a[F] .[a.=b]P’"

Mmt "P =a[F] P’ ==> .[a.~=b]P =a[F] .[a.~=b]P’"

Repl "P =a[F] P’ ==> .!P =a[F] .!P’"

defs

Alpha_def "Alpha == {(P, P’) . EX S. finite S & P =a[F] P’}"

For sample proofs, consider the following, using rule induction solved by Is-
abelle’s automatic tactics auto_tac and force_tac, or using further interaction:

Goal "P =a[F] P’ ==> P =a[F Un F’] P’";

by (etac Al.induct 1);

by (auto_tac (claset() addSIs Al.intrs, simpset()));

qed "Al_un1";

Goal "P =a[F] P’ ==> ALL Q Q’ xs xs’ . \

\ P = p{xs}Q & P’ = p{xs’}Q’ & \

\ y ~: insert z ((dom xs) Un (dom xs’) Un n Q Un n Q’) --> \

\ p{y<->z}P =a[{y, z} Un F] p{y<->z}P’";

by (etac Al.induct 1);

... (* long chain of interactions *)

by (REPEAT (force_tac

(claset() addSDs psubst_cases addSIs Al.intrs, simpset()) 1));

qed "lemma";

Goal "[| P =a[F] P’ ; y ~: (n P Un n P’) |] \

\ ==> p{y<->z}P =a[{y, z} Un F] p{y<->z}P’";

by (case_tac "y=z" 1);

by (force_tac (claset() addIs [Al_insert], simpset()) 1);

... (* instantiations *)

by (Force_tac 1);

qed "Al_pren_cong1";

15

